NVIDIA Turing™ Tensor コア テクノロジには、多精度コンピューティングで AI 推論を効率化するという特徴があります。 Turing Tensor コアは、FP32 から FP16、INT8、INT4 まで、ディープラーニングのトレーニングと推論のためのさまざまな精度に対応しており、NVIDIA Pascal™ GPU を上回るパフォーマ … NVIDIA Corporation(エヌビディアコーポレーション)は、アメリカ合衆国 カリフォルニア州 サンタクララにある半導体 メーカー。 コンピュータのグラフィックス処理や演算処理の高速化を主な目的とするGPU(グラフィックス・プロセッシング・ユニット)を開発し販売する。 éCuÔguCopyright © ITmedia, Inc. All Rights Reserved.±ÌLªCÉüÁ½ç NVIDIAがTuringアーキテクチャを採用する新GPU「GeForce RTX」シリーズを発表した。 今回発表されたラインアップは3モデルで、価格は499ドル~999ドル。 ■製造プロセスが12nmとなり、前世代のGeForce GTX 10シリーズ(16nm)から比べて微細化しました。■「12nm」製造プロセスを採用GeForce RTX 2080 Ti(TU102)のCUDA Core数は4352基となり、Geforce GTX 1080 Ti(GP102)の3584基と比べるとCUDA Coreの数が1.2倍となりました。レイトレーシング用の「RTコア」の実装により、最大でGeForce GTX 1080 Tiの約10倍となる10G Ray/sのレイトレーシング性能を実現しました。ディープラーニング用の「Tensorコア」の実装により、最大でFP16演算時に110TFLOPSの演算性能を実現し、GeForce GTX 1080 Tiの約4倍のディープラーニング性能となりました。 NVIDIA® GeForce RTX™ 20シリーズは、2018年8月20日に発表された新しい NVIDIA Turing™ GPU アーキテクチャと革新的な RTX プラットフォームを採用したグラフィックスを再創造する新たなGeForceです。GeForce RTX 20シリーズのグラフィックス カードでは、パフォーマンスの向上に加え、「リアルタイム レイ トレーシング」、「ディープラーニング」、「プログラマブル シェーディング」が統合されています。また、Direct X12への対応や、4K HDRゲーミングに最適化され、最新の人気のゲームを脅威の高解像度映像でお楽しみいただけます。 レイトレーシング用の「RTコア」の実装により、最大でGeForce GTX 1080 Tiの約10倍となる10G Ray/sのレイトレーシング性能を実現しました。ディープラーニング用の「Tensorコア」の実装により、最大でFP16演算時に110TFLOPSの演算性能を実現し、GeForce GTX 1080 Tiの約4倍のディープラーニング性能となっています。メモリコントローラーの改善と基板回路の改善によりGDDR6に対応し、最大14Gbpsの転送速度を実現しました。テクスチャの圧縮効率を向上し、より有効にビデオメモリやメモリ帯域を活用できるようになりました。SLIに変わる新たにブリッジコネクタとして、SLIより50倍高速なNVLinkを採用しました。VirturlLink用にUSBコントローラーが内蔵され、ディスプレイ出力コネクタにUSB Type-Cが用意されました。Turing GPU アーキテクチャは新しいGeForce RTX グラフィックス カードに採用される最新のアーキテクチャです。前世代となるPascalアーキテクチャのグラフィックス カードに比べて最大で 6 倍ものパフォーマンスを提供し、リアルタイム レイ トレーシングと AI のパワーをゲームに活用できます。GDDR6に対応し、広帯域の超高速メモリは4Kの高解像度で高いパフォーマンスを発揮します。GeForce RTX 20シリーズは、世界初のレイトレーシングゲーミンググラフィックスカードです。そのパフォーマンスは前世代のグラフィックスカードの6倍以上となります。あらかじめディープラーニングで「学習」されたデータを、ディープラーニング用のTensorコアを用いて「推論」を実行し、より優れたAnti-Aliasing(AA)をより低い負荷で実現します。従来のゲームタイトルでもAA適用時のパフォーマンスを40%ほど引き上げるなど、タイトルによっては合計で2倍ものパフォーマンスを得られるとされています。また、4K HDRでAAをかけてもパフォーマンスが落ちない要素の一つとされています。VirtualLink™(バーチャルリンク)は、GeForce RTX 20シリーズで搭載されたバーチャルリアリティ向けヘッドセットの接続のために規格された新たなコネクタです。A1.A2.※NVIDIAリファレンスデザインに基づく場合。オリジナルクーラーモデルやOCモデルの場合、必要な補助電源コネクタが変わる場合が有ります。A3.※ブリッジもSLI用ブリッジからNV LINK用ブリッジへと変更になるため、別途NV LINK用ブリッジが必要となります A4.A5.Windows2000登場前からほぼ一貫してPC製造部門に従事。PC組立はもちろん、OSイメージの作成や製造時のトラブルシュートを行う。 その経験を生かしてOSの基本情報や資料室を担当する事が多い。法人での購入はユニットコムビジネスご優待会員が大変お得です。
GeForce RTX 20シリーズ NVIDIA Turingとは GeForce RTX 20シリーズの読み方 「GeForce RTX」は ジーフォース アールティーエックスと一般的に呼ばれています。「Turing GPUアーキテクチャ」はチューリング ジーピーユー アーキテクチャと呼ばれています。 「GeForce RTX」は ジーフォース アールティーエックスと一般的に呼ばれています。「Turing GPUアーキテクチャ」はチューリング ジーピーユー アーキテクチャと呼ばれています。 NVIDIAは、ハイブリッドレンダリングへの扉を開く新GPUアーキテクチャ「Turing(チューリング)」を市場に投入する。 検索閉じるPC Watch をフォローする最新記事7月25日 09:507月25日 06:507月24日 13:007月24日 11:217月24日 11:01後藤弘茂のWeekly海外ニュース2018年9月14日 22:00 NVIDIAはTuring世代で、レイトレーシングをアクセラレートする「RTコア」と、深層学習向けの「Tensorコア」を搭載した。製造プロセス技術は12nmとなり、対応メモリはGDDR6となった。 TuringベースのGeForce製品ラインナップは3系統で、それぞれダイ(半導体本体)とコードネームが異なる。 ハイエンドの「GeForce RTX 2080 Ti」が「TU102」、その下のクラスの「GeForce RTX 2080」が「TU104」、ミドルレンジGPUの「GeForce RTX 2070」が「TU106」。従来なら2種類のダイ(半導体本体)で作り分けていたラインナップを、3種類のダイで構成している。 TU102が18.6B(186億)トランジスタで754平方mm、TU104が13.6B(136億)トランジスタで545平方mm、TU106が10.8B(106億)トランジスタで445平方mmで、もっとも小さなTU106ですら、AMDの「Radeon RX Vega64 (Vega10)」の12.5Bトランジスタ486平方mmに迫る。 本来のNVIDIAの命名規則では、コードネームの末尾の数字が6番台のGPUダイは、サイズが200平方mm台だが、Turing系では2倍のサイズとなっている。つまり、機能を増やした分、ダイ(半導体本体)を大きくしてトランジスタ数を増やしたGPUファミリがTuringだ。 TU102は、NVIDIAのグラフィックス向け設計のGPUでは、過去最大のサイズとなる。また、Turingでは、200平方mm台やそれ以下の、従来ならメインストリームクラスのダイが存在しない。 NVIDIAは、Turing世代では、GPUのプロセス技術を12nmプロセスに留めた。TSMCの12nmプロセスは、同社の16nmプロセスからの派生プロセスで、同じセルハイトのスタンダードセルを使うかぎり、それほどトランジスタ密度が上がらない。 NVIDIAは7.5Tのスタンダードセルを継続していると見られ、トランジスタの増加分はダイの肥大化となる。結果として、サーバー向けCPUクラスの大型ダイのGPUファミリが産まれた。 ちなみに、NVIDIAは本来、この世代ではSamsungの10nmプロセスを使う予定だったと言われている。成熟した12nmにとどまることで、ダイを大きくしても歩留まりを上げる選択を行なったと見られる。 Turingアーキテクチャの目玉は、レイトレーシングのアクセラレータである「RTコア(RT Core)」だ。RTコアは、NVIDIA GPUで初めての実装となる。 レイトレーシングは、通常は仮想の視点から光線を逆に辿る。画面上のピクセルを通るレイを生成(レイジェネレーション: Ray Generation)し、そのレイを3D空間の奥へとどんどん伸ばす(トラバーサル: Traversal)、そしてレイが3D空間の中のオブジェクトと交差するかを判定する(インターセクションテスト: Intersection Test)。 交差した場合は、オブジェクトに応じて、そこから反射や屈折のレイを生成するかシェーダを起動するかなどに分岐する。デフューズで拡散反射する場合は、複数のレイが生成される。複数回の反射の場合は、レイも複数生成される。 RTコアでは、生成したレイのトラバーサルからインターセクションまでをハードウェアで処理する。これらの処理は複雑であるため、シェーダでソフトウェア実行する場合は1,000命令以上を必要とするが、RTコアはそれをオフロードできる。 レイトレーシングでは、トラバーサルは段階的でステップ数が多く、インターセクションは多くのオブジェクトと交差の判定を行なわなければならないため、計算量が膨大になる。そこで、NVIDIAのRTコアでは、これらを軽減するテクニックをハードウェアでサポートする。 交差判定を減らす手法としては、バウンディングボリューム(Bounding Volume)や空間分割などがある。NVIDIAは階層型のバウンディングボリューム「BVH(Bounding Volume Hierarchy)」を使うトラバーサルを採用している。 この技法は、NVIDIAのGPUソフトウェア実装のレイトレーシングAPIである「OptiX」に採用されている。 バウンディングボリューム(BVH)では、3D空間のオブジェクトを、外接する大きなボックスで囲ってしまう。 たとえば、人型のキャラクターなら、それぞれの部位を囲うボックスで覆ってしまう。ゲームプログラムでの、当たり判定のボックスと似たようなものだ。銃弾の軌跡の当たりを判定する代わりに、レイの軌跡の交差を判定する。 BVHでは、ボックスはツリー構造の階層となっており、大きなボックスのなかに、さらにオブジェクトに近い小さなボックスが配置されている。 BVH法では、レイとボックスのインターセクションのテストを行ない、交差した場合は、さらに下位のボックスのインターセクションをテストする。 BVHでは、レイと交差する可能性のあるトライアングルすべてをテストする必要がなく、数回の階層型のボックスのテストだけで済むため、インターセクションテストの回数を減らすことができる。 また、トラバーサルも大きなボックスから次のボックスへと一気に伸ばすことができるため、トラバーサルの計算量も減らすことができる。 RTコアは、バウンディングボリュームのデータ構造をサポートし、ボックス毎にインターセクションテストを行なう。 従来のラスタライズ法レンダリングでは、ジオメトリデータはラスタライズしてピクセルに変換したあとは、廃棄することができた。 しかし、レイトレーシングを併用するハイブリッドレンダリングでは、ジオメトリデータはラスタライズ後も保持する必要がある。 NVIDIAのRTコアへの対応では、ジオメトリデータはバウンディングボリュームとひも付けされて、メモリ上のBVHデータベースに格納されるという。 RTコアは、BVHのデータ構造にしたがって、上位のボックスからトライアングルまで、ツリー構造で読み出してインターセクションテストを行なう。 バウンディングボリューム(BVH)法の難点は、BVHのボックスを前もって定義しなければならない点だ。 これについては、現在のRTコアでは自動的に生成する機能は持たないと、NVIDIAは説明する。そのため、ゲームデベロッパなど3Dオブジェクトの作成者は、RTコアによるレイトレーシングを効果的に使うためには、BVHデータも用意しなければならない。 複雑なオブジェクトや、動いて形状が変化するようなオブジェクトの場合、かなり複雑な作業となる。しかし、空間を単純にボクセルに分割して交差を判定する方法よりも、BVHのほうが効率がずっと高いため、NVIDIAはBVHを採用したと見られる。 こうした構造を持つため、RTコアによるレイトレーシングは、どのようにRTコアを使うかによって難度が異なる。 点光源や面光源などにレイトレーシングを使う場合は簡単だが、複雑なレイトレーシングを行なう場合はBVHデータを用意する手間がかかる。BVHデータも、固定され形状が変化しないオブジェクトは簡単だが、動的に変化する場合は面倒になる。 もちろん、BVHに対するソフトウェアツールによるサポートが充実すれば、このハードルは低くなるため、時間とともに解決すると思われる。 現在のグラフィックスは、3角形のポリゴンをベースにしたジオメトリをラスタライズしており、曲面はポリゴンに分割している。 しかし、レイトレーシングを使うなら、ポリゴンである必要もなくなる。交差の判定ができれば良いため、曲面をポリゴンに分割せずに、曲面のまま扱うことも原理的には可能となる。 しかし、NVIDIAのRTコアが扱うのは、基本はハイブリッドレンダリング、つまりラスタライズ法のレンダリングとの組み合わせとなる。そのため、現在のRTコアはポリゴンを前提とした設計になっているとみられる。 NVIDIAは、ハイブリッドレンダリング向けの機能の搭載のために、GPUの演算クラスタである「SM (Streaming Multiprocessor)」のマイクロアーキテクチャを、Turingで大きく変えた。 TuringのSMは、コンピュート向けGPUアーキテクチャ「Volta(ボルタ)」をベースとしている。グラフィックス系の前世代であるPascal(パスカル)のGP102系とはSMが大きく異なる。 GP102系のSMは、その前世代のMaxwell(マクスウェル)を踏襲していた。それに対して、VoltaのSMは新設計で、TuringのSMは、VoltaのSMからスタートしてさらに発展させたアーキテクチャとなっている。 TuringアーキテクチャでのSMは、4個のサブブロックと共有ブロックに分かれている。サブブロックである「Processing Block(プロセッシングブロック)」は、1サイクルに1命令イシューのプロセッサコアとなっている。 NVIDIA GPUは、「warp」と呼ばれる32スレッドのバンドルで命令を実行する。Processing Blockには1個の命令ユニットがあり、warpスケジューラが、各サイクルに1個のwarpから1個の命令をフェッチして、実行パイプラインにイシューする、きわめてシンプルな構造となっている。 CPU的に言えば、Processing BlockがCPUコアにあたる。そのたとえでは、SMはクアッドコアのクラスタだ。 Processing Block内でのWarpスケジューラからの命令イシューは、3系統に分かれる。演算ユニット群、Tensorコア、メモリアクセスユニット群の3系統だ。 通常の演算ユニットに対する命令は「Math Dispatch Unit(マスディスパッチユニット)」からディスパッチされる。演算ユニットは、16-wayのFP32積和算ユニット(CUDAコア)、16-wayの32-bit整数演算ユニット、4-wayのSpecial Function Unit(SFU: スペシャルファンクションユニット、超越関数など複雑な演算専用ユニット)となる。 命令イシューは、各サイクルに1warpの1命令に制限されているが、演算ユニットは複数サイクルのスループットでwarpを実行する。 FP32のCUDAコアと整数演算ユニットは、それぞれ16-wayであり、32スレッドのwarpを実行するには、2サイクルのスループットとなる。 つまり、FP32と整数の両ユニットに対しては、2サイクルに1回しか命令を発行できない。 そのため命令ディスパッチャは、FP32 CUDAコアと整数演算ユニットに、交互に命令を発行することで、理論上は両ユニットを並列にフル稼働させることができる。 言い換えれば、FP32浮動小数点演算と整数演算を平行して実行することができる。 また、各サイクルに発行される命令は、それぞれ異なるwarpからピックできる。ある命令の次に発行される命令は、別なスレッドの命令となる。 そのため、スレッドのなかでの命令レベルの並列性を考慮する必要がなく、制約がない。1つのwarpの命令ストリームに、浮動小数点と整数の命令が交互にスケジュールされている必要はないため、比較的高い確率で並列に実行できる。 GPUコンピューティング向けのVoltaでは、Processing Block内に8-wayのFP64ユニットも搭載する。しかし、グラフィックス向けのTuringでは、FP64の性能はFP32の32分の1となっている。各サイクルにSM毎に2命令のスループットだ。 Processing Block単位では、2サイクルに1命令スループットとなる。FP64は、あくまでも命令の互換性を保つための実装であり、性能は重視しないという位置づけだ。 Turingは、グラフィックス向けGPUでは初めて深層学習用ユニットのTensorコアを搭載した。 Tensorコアは、これまでGPUコンピューティング向けのVoltaや、車載向けのXavier(エグゼビア)にしか搭載されていなかった。 Tensorコアは4x4のマトリックスの積和算ユニットだ。基本の仕様はFP16で、4x4の乗算を4列並列に実行できる。そのため、64ユニットの乗算ユニットと16ユニットの加算ユニットを、1個のTensorコアのなかに備え、1サイクルで64の積和算が可能だ。 GPUコンピューティング向けのVolta GV100もTensorコアを搭載しているが、Turing系のGPUのTensorコアは、実装が若干異なる。 GV100では、FP16半精度浮動小数点演算のみのサポートで、トレーニング(学習)向けには、FP16同士の乗算の結果を4個加算して、FP32に出力できる。インファレンス(推論)では、FP16同士の乗算を4個加算してFP16で出力する。FP32出力では、スループットが半分に落ちる。 一方、TuringのTensorコアでは、Voltaと同じFP16精度をサポートするだけでなく、8bitの整数「Int8」と4bitの整数「Int4」もサポートする。 演算性能はInt8でFP16の2倍、Int4で4倍となる。サーバー向けを主眼としたGPUであるGV100に対して、Turing系GPUはクライアントであるため、推論に力点があり、推論で多用される低数値精度が強化された。 なぜ、NVIDIAは深層学習向けのTensorコアを、グラフィックス向けのGPUに搭載したのか。それは、Tensorコアによって、グラフィックス処理の高品質化を図ることができるからだという。 その一例としてNVIDIAが強調するのが、非常に高品質なアンチエイリアシングを実現する「DLSS (Deep Learning Super Sampling)」だ。MSAA x64よりも優れたAAを、より低い負荷で実現できるという。 ちなみに、NVIDIAが発表している「Turingは前世代のPascal系に対して2倍の性能」というスライドの根拠は、ここにある。 細かなデータは公開していないが、同等品質のアンチエイリアシングを実現するために必要な性能を、負荷の高いMSAAと比較すると、DLSSのほうが性能がはるかに高くなるとしている。 VoltaとTuringともに、1個のProcessing Blockのなかに、2個のTensorコアを備える。SM全体では8個のTensorコアとなる。 命令ユニットは、1サイクルに2個のTensorコアに同時に命令を発行することが可能で、理論上は2個のTensorコアをフル稼働させることができる。 Tensorコアは命令発行の仕組みがほかの演算ユニットと異なるため、命令ディスパッチユニットが分離されている。 このほか、各Processing Blockには、64KBときわめて大量のレジスタファイルが配置されている。SM全体では256KBのレジスタファイルとなる。 GPUでは、インフライトで走るスレッド数が非常に多いため、レジスタファイルが大きい。各Processing Blockにつき、32-bitレジスタが合計16,384本。実際には、32スレッドのwarp単位のアクセスとなる。 SMアーキテクチャの改良や、レジスタファイルの強化、後述するメモリ階層の改良などによって、Turingアーキテクチャでは、PascalよりもSM自体の効率が上がっている。そのため、NVIDIAはシェーダ性能も向上していると説明する。 NVIDIAのSMは、Processing Block間で共有されるユニットを備える。従来はテクスチャユニットやL1データキャッシュ/シェアードメモリが共有ユニットだった。NVIDIAによると、RTコアも同様に共有コアとして配置されているという。 NVIDIAのVolta SMでは、共有ユニットへの命令は、専用のキュー「MIO queue」にいったん格納される。MIOキューから、さらに4個のサブコアの命令を統合したMIOスケジューラに渡され、そこから発行される。 NVIDIAは、もともとKepler世代から命令スケジューリングの手法を変更、レイテンシが固定されている演算命令と、レイテンシにバラつきがあるメモリアクセス系の命令のスケジューリングを分けて行なうようになった。 Keplerでは、演算コアに対しては、演算レイテンシをベースにコンパイラでスケジューリングを行ない、メモリアクセス命令については、スコアボーディングでスケジューリングを行なっている。 Voltaもその流れを継承している可能性が高く、演算系とメモリ系のスケジューリングが分離されている。 この仕組みが、Turingも同様だとすれば、スケジューラが分離されている理由もよくわかる。 MIOスケジューラは動的に命令スケジューリングを行なっており、それによってレイテンシに幅がある命令を制御していると見られる。RTコアも、BVHデータベースを参照するためにメモリアクセスが非常に多く、レイテンシに幅がある。 TU102のレイトレーシング性能は、10GRay/s(秒間10兆レイ)と発表されている。RTコアはGPU全体で68ユニット、動作周波数はブーストで1.545GHz。そのため、1個のRTコア自体のスループットは計算上で0.095ray/cycleになる。 言い換えれば、1個のRTコアは、約10.5サイクルに1回レイの処理を受け付けることが可能という計算になる。つまりRTコアは、約10サイクルスループットのユニットとなる。 もっとも、当たり前の話だが、NVIDIAによるとRTコアのレイテンシは、レイによって異なり、一定ではないという。 そのため、10Giga Ray/sというTU102 RTコアのスペックも、じつはNVIDIAによる平均スループットの予測をベースにしたものとなる。複雑なレイ処理になると、この数字よりも落ちる可能性がある。 RTコア自体は、すでに説明したように、BVHトラバーサルとインターセクションテストをハードウェアでサポートする。レイをジェネレートするとRTコアに渡され、いったんレイがトライアングルにヒットすると、RTコアからシェーダに戻すと見られる。 RTコアにオフロードする処理は限定的で、レイトレーシングに関するすべての処理がRTコアで行なわれるわけではない。 しかし、処理の重い部分はRTコアのハードウェアでアクセラレートされるため、劇的にレイトレーシング性能を上げることができる。 メモリ階層は、Volta同様に統合されたキャッシュ階層となっている。SMの内部には、コンフィギュラブルな96KBのメモリがある。 96KBのコンフィギュラブルメモリは、4個のProcessing Blockの間での共有ユニットだ。96KBを分割して、異なる用途に振り分けることができる。 伝統的なグラフィックスワークロードでは、64KBのシェーダメモリと32KBのテクスチャキャッシュ兼レジスタファイルスピルエリアに設定することができる。 コンピュートワークロードでは、32KBのシェアードメモリと64KBのL1データキャッシュの組み合わせか、64KBのシェアードメモリと32KBのL1データキャッシュのどちらかに設定できる。RTコアも、コンフィギュラブルメモリの参照ができると推測される。 SM内のキャッシュでは、このほかに命令系のキャッシュ階層がある。L1命令キャッシュはSMで共有で、各Processing Block内には小さなL0命令キャッシュがある。 NVIDIA GPUでは、L2キャッシュは、SM側ではなくDRAMコントローラ側にある。SMとDRAMコントローラはクロスバーで結ばれている。DRAMインターフェイスは32-bitで1チャネルとなっている。 TU102では、合計12個のx32 DRAMインターフェイスを備えており、合計で384-bitのGDDR6インターフェイスとなる。ただし、GeForce RTX 2080 Ti(TU102)では、そのうち1個が無効化されており、メモリインターフェイスは352-bitとなる。 L2キャッシュは、512KBずつDRAMコントローラに付随しており、12ユニットで合計6MBとなる。1個のDRAMコントローラが無効化になっているGeForce RTX 2080 Tiでは、L2キャッシュの量は5,632KBとなる。 サポートするメモリ種類は、GDDR5XからGDDR6となった。メモリ転送レートはGDDR5Xでの最高11Gbpsから、GDDR6では14Gbpsへと大幅に高速化された。 メモリ帯域は、352-bitインターフェイスのGeForce RTX 2080 Ti(TU102)で616GB/s。NVIDIAのリファレンスボードは、8Gbit DRAMチップでメモリ搭載量は11GB。メモリの転送レートは、Turingファミリを通じて14Gbpsで共通している。 GeForce RTX 2080(TU104)では256-bitインターフェイスで448GB/s、8GB。GeForce RTX 2070(TU102)も同様に256-bitインターフェイスで448GB/s、8GB。今回のGDDR6の提供はMicron Technologyとなっている。 GDDR6には、メモリの転送レートの向上以外にも利点がある。 GDDR6は、メモリインターフェイスが完全に新規格となっており、x32のインターフェイスは、内部的にx16に分割されている。1個のDRAMチップが2つのx16チャネルで構成されており、チャネル毎に個別のメモリアクセスが可能だ。 そのため、メモリアクセスの粒度はGDDR5までと同様に抑えられており、GDDR5Xのようなアクセス粒度の問題がない。その分、効率の高いメモリアクセスが可能だ。 NVIDIA GPUは、階層型の構造となっている。SMを最小単位として、複数のSMを束ねたGPC (Graphics Processing Cluster)というクラスタが構成されている。 GPCは、レンダーバックエンド以外のグラフィックスコアとしての機能をまとめたクラスタで、言ってみればミニGPUだ。GPCには、ジオメトリからピクセルへと変換するラスタライザがあり、GPC内のSMで共有されている。また、ジオメトリパイプの固定機能ユニットが、2個のSM毎に共有されている。 TU102ダイの場合は6個のGPCがあり、それぞれのGPCは12個のSMとラスタライザで構成されている。合計で72個のSMが搭載されている。 TU102を使ったプロ向けのQuadro RTX 6000/8000は72個のSMが有効にされており、GPU全体で4,608個のCUDAコアが含まれている。 コンシューマ向けのRTX 2080 Tiは、SMのうち68個が有効とされており、CUDAコアが4,352個となっている。4個のSMが無効化にされているのは、歩留まりの向上のためだ。 I/O回りは、クロスバーに接続されたHubに接続されている。Turingでは、上位のダイには、NVIDIAのチップ間インターコネクト「NVLink」が実装されていることも特徴だ。 NVLinkはVolta GV100には6リンクが実装されているが、TuringではTU102に2リンク、TU104に1リンクが実装されている。 NVLinkは差動信号(Differential Signaling)方式の狭インターフェイスで、各リンクにつき、片方向8ペア、双方向16ペアで構成される。 現在の世代のNVLinkの転送レートは、1ペアあたり片方向で25Gbps。そのため、8ペアで構成される1リンクの片方向リンクは25GB/sの帯域、双方向で50GB/sの帯域となる。 グラフィックス向け製品であるGeForce RTXでは、NVLinkはマルチGPU構成のSLIに使われる。 NVIDIAのリファレンスデザインにはNVLinkの接続ポートがあり、2枚のカードを接続するNVLinkブリッジも提供される。従来のPCI Express経由のSLIに対して帯域が上がるだけでなく、NVLinkを経由したメモリ共有も可能だ。 現在は、2カードの接続構成だけがサポートされているが、TU102については、NVLinkが2リンクなので、物理的には3枚カード構成も可能だ。もちろん、NVSwitchを使えば、4枚以上のマルチGPU構成も可能にはなる。 TuringアーキテクチャのGeForce RTXファミリの設計思想は、ハイブリッドレンダリングへの道を開くことだ。 ダイサイズを大きくして増やしたトランジスタの多くは、レイトレーシングと深層学習につぎ込まれた。 そこには、単純にシェーダ性能を増やすだけの時代は終わり、ハイブリッドレンダリングの時代に入ったという、NVIDIAの認識が感じられる。▲▲2019年2月5日Copyright ©
.
世 の 状況, 辻調理師専門学校 通信 学費, バロンドール 受賞回数 ランキング, マネもの エンディング 曲, プリーツスカート 韓国 コーデ, 近キョリ恋愛 映画 配信, ドラクエ5 Rom Ds, ジャニーズ 赤坂 事務所, Ins Kino Gehen ドイツ語, 笑っていいとも テレフォンショッキング 出演者, キンプリ 7月 出演 番組, マリーゴールド Mp3 ダウンロード, 乃木坂 二 期生 一 期生, スターツ 駐車場 月極, 個性 類語 英語, サーモス スープジャー うどん, ダダリン 色違い オシャボ, キングヌー オリコン シングル, ゴスロリ ワンピース ブランド, ギルティ 3話 ユーチューブ, ハイキュー 4期 Youtube, 緑 谷 出久 腹筋 崩壊 小説, ボカロ 片思い 男目線, グローリア 合唱 歌詞, 動物 写真集 プレゼント, Akb 千本桜 謝罪, ポケモンGO フレンド申請 取り消し, モルテン ホイッスル 電池交換, 土 メカニック 2100万, ボートレース Cm 曲 Reol, フランス 人気 テレビ番組, Sixtones 流出写真 インスタ, ポケモン剣盾 岩タイプ おすすめ, L'arc En Ciel Yukihiro 作曲, ぐるナイ 動画 2月13日, サントリーホール ブルーローズ 料金, 乃木坂46 10thシングル センター, 米津玄師 サポートメンバー ピアノ, Ff14 ドラクエコラボ ゴールドマン, ジェフ ゴールドブラム 筋肉, PSO2 海外 接続, 五 等 分の花嫁 漫画, グランジ 芸人 解散, Is It Possible That 意味, 香水フレグランスPARFUM De EARTH 評判, ポケモンgo ニューラ 弱点, 沢村一樹 息子 グラン メゾン 東京, ツバメ 越冬 地域, Jam Up 意味, あいみょん 今夜このまま Mp3, ドライブレコーダー 吸盤 改造, Will You Marry Me 意味, ダンス カノン 由来, しても問題 ありません 英語, 現在完了形 否定 Yet, 新宿 香水 ルミネ, 日本女子大学 補欠合格 2020, ろりーた 古着 通販, Ark 突然変異 色, PSO2 特殊能力移植パス キャンペーン, グラブル 黄龍 クリュサオル, お母さん お父さん イラスト, ドイツ語 Der Dieser 違い, ポケモンgo トリデプス レイド, 鎮西寿々歌 西宮 北高校, 三吉 彩花 オフィシャル, Remote Work Japanese Translator, ポケモンgo 起動しない アップデート, マコモ アトピー 飲む, 紅蓮華 吹奏楽 小編成, 七つの大罪 戒めの復活 挿入歌, 白石 聖 フォト ブック, ポケモンxy 御三家 おすすめ, ひげ たん で ぃ ず む 宿命 歌詞, ヒロアカ 名言 オール フォーワン, ムロツヨシ 戸田恵梨香 ツイッター, 紅蓮華 吹奏楽 小編成, 東京MX 映らない REGZA, 常守 朱 ニコニコ, まほやく ブラッドリー 耳, グリセリン 粘度 30°c, Pso2 コフィー クライアントオーダー, SixTONES 病系 占い ツクール, 佐賀花火 6 月 1 日, HAL CM曲 2017, あいみょん ライブ 高知 チケット, シャドウ オブ ウォー ナズグル, アイドル部 登録者数 減少,